Multidisciplinary approach to colorectal cancer treatment
What we will be talking about

- Epidemiology
- Etiology and risk factors
- Prevention
- Screening
- Signs and symptoms
- Treatment
- Follow up
INCIDENCE
- worldwide CRC is the third most common cancer, the second leading cause of cancer death. It is currently the second most common cause of cancer death in the United States for men and women combined (nearly 150,000 new cases and 50,000 deaths each year), accounting for about 10% of cancer mortality
- Age is a major risk factor for sporadic CRC. The lifetime incidence of CRC in patients at average risk is about 5%, with 90% of cases occurring after age 50
- the highest incidence rates in North America, Australia, and northern and western Europe; developing countries have lower rates, particularly Africa and Asia (differences in dietary and environmental exposures)

MORTALITY
- United States has one of the lowest mortality rates from CRC (61% survive 5 years)
- China and Eastern Europe – the lowest 5-year survival rates (32 and 30%, respectively)
RISK FACTORS

- **GENETIC** <5% (but up to 30% with some mutations)
 - FAP - Familial adenomatous polyposis
 - HNPCC - hereditary nonpolyposis colorectal cancer (Lynch syndrome)

- **ENVIRONMENTAL**
 - personal history of sporadic CRC (metachronous CRC)
 - personal history of large (>1 cm) adenomatous polyps and polyps with villous or tubulovillous histology (patients with an isolated small (<1 cm) tubular adenoma do not appear to be at increased risk)
 - family history of sporadic CRC
 - family history of a large (>1 cm) or histologically advanced colonic adenoma appears to carry the same significance as a positive family history of colorectal cancer
RISK FACTORS

ENVIRONMENTAL

- **Inflammatory bowel disease** - chronic **ulcerative colitis** (mainly long lasting pancolitis), it appears that pancolitis due to **Crohn's disease** is associated with a similar relative risk of colon malignancy as extensive ulcerative colitis

- **Diabetes mellitus and insulin resistance** (the risk of colorectal cancer among diabetics was approximately 30% higher than nondiabetics - hyperinsulinemia- insulin is an important growth factor for colonic mucosal cells and stimulates colonic tumor cells)

- **Obesity** - also increases the likelihood of dying from colorectal cancer

- **Alcohol**

- **Cholecystectomy?** (proximal CRC)
RISK FACTORS

ENVIRONMENTAL

- presence of coronary heart disease
- cigarette smoking
- ureterocolic anastomoses after extensive bladder surgery
- long-term consumption of red meat or processed meats
- history of radiation therapy for prostate cancer
Diet
- high in fruits and vegetables, garlic
- fiber? folic acid?
- Vitamin B6 (pyridoxine)
- calcium?
- magnesium

Physical activity

Chemoprevention
- Vitamins C and E
 - mixed results
- Calcium intake
 - Modestly decreased risk
- NSAIDs
 - Decreased risk, but...
 - Side effects
- Postmenopausal HRT
 - Decreased risk, but...
 - Increased risk of other carcinomas
Survival

- Improvement in recent years
- Multifactor:
 - Wider surgical resection
 - Modern anesthetic techniques
 - Improved supportive care
 - Better staging
 - Screening
 - Improvement in neo-/adjuvant chemotherapy and radiotherapy
Survival

TABLE 1: Five-year relative survival rates in colorectal cancer by stage at diagnosis (1995–2005)

<table>
<thead>
<tr>
<th>Stage at diagnosis</th>
<th>5-year survival rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All stages</td>
<td>64</td>
</tr>
<tr>
<td>In early, localized stage</td>
<td>90</td>
</tr>
<tr>
<td>After spread to adjacent organs or lymph nodes</td>
<td>67</td>
</tr>
<tr>
<td>After spread to distant sites</td>
<td>10</td>
</tr>
<tr>
<td>Unstaged</td>
<td>35</td>
</tr>
</tbody>
</table>

SCREENING FOR COLORECTAL CANCER
Adenoma-carcinoma sequence

- Most colorectal cancers arise from adenomatous polyps that progress from small to large (>1.0 cm) polyps, and then to dysplasia and cancer.

- The progression from adenoma to carcinoma is believed to take at least ten years.

- Some colon cancers arise from non-polypoid adenomas that are flat or depressed and account for 22 to 36% of identified adenomas; difficult to identify; large flat adenomas may be more likely to contain dysplastic changes or cancer than polypoid ones of comparable size.

- Removal of adenomatous polyps prevents cancer.
Average risk adults should have screening at age 50

Choice of modality varies by country
 - In Poland: colonoscopy once every 10 years
DETECTION OF INCREASED RISK

FAMILY HISTORY:

- Risk is slightly increased if any family member has had CRC, but is doubled if CRC occurred in a first-degree relative (e.g., parent, sibling, or child).

- With a larger number of affected relatives and an unusually early age of onset (e.g., below age 50 years) the risk is as much as six times higher.

- A family history of adenomatous polyps before age 60 years also increases risk.

- General rule: 1st colonoscopy 10 years before age of first CRC in family.
Screening recommendations

<table>
<thead>
<tr>
<th>Test</th>
<th>Interval</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>gFOBT and FIT</td>
<td>Annual</td>
<td>Positive test followed by colonoscopy</td>
</tr>
<tr>
<td>sDNA</td>
<td>?</td>
<td>Positive test followed by colonoscopy</td>
</tr>
<tr>
<td>Sigmoidoscopy</td>
<td>Every 5 yrs</td>
<td>Positive test followed by colonoscopy</td>
</tr>
<tr>
<td>Colonoscopy</td>
<td>Every 10 yrs</td>
<td>Therapeutical procedure, H-P samples</td>
</tr>
<tr>
<td>Virtual colonoscopy</td>
<td>Every 5 yrs</td>
<td>If lesion > 6 mm, should be followed by colonoscopy</td>
</tr>
<tr>
<td>Double contrast barium enemas</td>
<td>Every 5 yrs</td>
<td>If lesion > 6 mm, should be followed by colonoscopy.</td>
</tr>
</tbody>
</table>
• 30-50% of CRC can be diagnosed with sigmoidoscopy
• the incidence rates for cancer of the ascending colon have increased, particularly in women
• Quality of colonoscopy!!
Sigmoidoscopy

- 60 cm flexible sigmoidoscope can reach to the splenic flexure

- case-control studies have found that sigmoidoscopy reduces overall CRC mortality by about one-third

- 2008 consensus guidelines recommend a five year interval for screening by flexible sigmoidoscopy (if negative) (USPSTF guidelines recommend a combination of flexible sigmoidoscopy every 5 years with gFOBT every 3 years)

- positive sigmoidoscopy should be followed by colonoscopy
Colonoscopy - can find most polyps and cancers - detects proximal lesions that would be missed by screening sigmoidoscopy - lesions can be removed during the same procedure - sensitivity for detection of adenomas and carcinomas is dependent on the experience and technique of the colonoscopist - American College of Gastroenterology now considers colonoscopy the "preferred" screening test - frequency of test if negative - 10 years?
Computed tomographic colonography — “virtual colonoscopy”

- non-invasive (but no biopsy)
- visualizes the entire bowel
- detects large adenomas about as well as optical colonoscopy
- larger lesions need to be followed up by colonoscopy, and smaller lesions by CTC surveillance
SCREENING for colorectal cancer

INCREASED RISK PATIENTS

<table>
<thead>
<tr>
<th>Condition / History</th>
<th>Follow-up Time</th>
<th>Procedure</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>People with a single, small (< 1 cm) adenoma</td>
<td>3-6 years after the initial polypectomy</td>
<td>Colonoscopy*</td>
<td>If the exam is normal, the patient can thereafter be screened as per average-risk guidelines.</td>
</tr>
<tr>
<td>People with a large (1 cm +) adenoma, multiple adenomas, or adenomas with high-grade dysplasia or villous change</td>
<td>Within 3 years after the initial polypectomy</td>
<td>Colonoscopy*</td>
<td>If normal, repeat examination in 3 years; If normal then, the patient can thereafter be screened as per average-risk guidelines.</td>
</tr>
<tr>
<td>Personal history of curative-intent resection of colorectal cancer</td>
<td>Within 1 year after cancer resection</td>
<td>Colonoscopy*</td>
<td>If normal, repeat examination in 3 years; If normal then, repeat examination every 5 years.</td>
</tr>
<tr>
<td>Either colorectal cancer or adenomatous polyps, in any first-degree relative before age 60, or in two or more first-degree relatives at any age (if not a hereditary syndrome)</td>
<td>Age 40, or 10 years before the youngest case in the immediate family</td>
<td>Colonoscopy*</td>
<td>Every 5-10 years. Colorectal cancer in relatives more distant than first-degree does not increase risk substantially above the average-risk group.</td>
</tr>
</tbody>
</table>

Smith et al. CA Cancer J Clin 2003;53;27-43
Colonoscopic Polypectomy and Long-Term Prevention of Colorectal-Cancer Deaths

- In the National Polyp Study (NPS), colorectal cancer was prevented by colonoscopic removal of adenomatous polyps.
- Given an estimated 25.4 expected deaths from colorectal cancer in the general population, the standardized incidence-based mortality ratio was 0.47 with colonoscopic polypectomy, suggesting a 53% reduction in mortality.
- Colonoscopic removal of adenomatous polyps prevents death from colorectal cancer — screening colonoscopy!!!

59 year old male patient with recent history of melena
No weight loss
No family history of any malignancy

What should we do next?
Principles of treatment

- Diagnosis
- Staging
- Treatment
- Follow up
Symptoms

- Abdominal pain — 44%
- Change in bowel habit — 43%
- Hematochezia or melena — 40%
- Weakness — 20%
- Anemia without other gastrointestinal symptoms — 11%
- Weight loss — 6%
- Other possible symptoms of CRC include abdominal distention, nausea, vomiting, weight loss, and fatigue
- CRC ultimately proves to be the origin of approximately 6% of adenocarcinomas of unknown primary sites - metastasis as first symptom
Diagnosis

- **Colonoscopy is the single best diagnostic test in symptomatic individuals**

- the entire large bowel can be examined for the presence of synchronous lesions (occur in 3 to 5% of patients with colon cancer)

- If malignant obstruction precludes a full colonoscopy preoperatively, the residual colon should be checked for synchronous lesions after resection of the obstruction
Diagnosis

Obligatory: histopathologic examination
Diagnosis

- Preferred
 - Specimen from primary tumor obtained by colonoscopy/rectoscopy

- Also
 - Specimen from metastatic tumors
 - Core needle/FNA from distant tumors (e.g. liver or lungs)
 - Body fluids
 - Peritoneal washing
Pathology

- **Adenocarcinoma** (90-95% of CRC)
 - Mucinous adenocarcinoma (10% of above)
 - Large quantities of extracellular mucus
 - Tendency to spread within the peritoneum
 - Lower sensitivity for PET-CT
 - Signet-ring cell carcinoma (1% of above)
 - Large quantities of intracellular mucinous
 - Probably more aggressive

- **Other**
 - Squamous cell (anal cancer)
 - Small cell, carcinoid tumors, adenosquamous, GIST, sarcomas, lymphomas etc.
Metastatic spread

- Local
 - Rather radial than longitudinal
 - Intra peritoneal

- Distal
 - Liver
 - Lungs (more common in rectal cancer)
 - Bones
 - Kidneys
 - Brain
 - Any other organ
Tumor markers: carcinoembryonic antigen (CEA)
- serum CEA level is not used as a screening test for colorectal cancer

- prognostic utility - patients with preoperative serum CEA >5 ng/mL have a worse prognosis, stage for stage, than those with lower levels

- elevated preoperative CEA levels that do not normalize following surgical resection imply the presence of persistent disease and the need for further evaluation

Low sensitivity for early tumors (almost all in stage IV, ½ in stage III and ¼ in stage II)
Staging

- T - Tumor
- N - Nodes
- M - Metastases
TNM staging system

- cTNM - clinical
- pTNM - pathological
- yTNM - after neoadjuvant
- rTNM - recurrent
- aTNM - autopsy
Staging (cTNM) Procedures

- **cTN**
 - CT scan of abdomen/pelvis for colon cancer
 - MRI of pelvis/ TRUS (transrectal ultrasonography) for rectum

- **cM**
 - CT of chest and abdomen
 - *Biopsy of any detected lesions*
 - CEA level
 - PET-CT - aid in equivocal situations. Body scan before radical metastasectomy
Staging

- Additional work up
 - Complete blood count
 - Liver and renal function tests
 - Urinalysis
 - Performance score assessment
 - Comorbidities
Staging

- **T**: depth of invasion (not: size of tumor)
- **N**: number of lymph nodes
- **M**: metastases (one organ/multiple)
Staging (pTNM)

- Pathological stage
 - Early stages – favorable prognosis
 - I - small tumor, no nodes
 - II - bigger tumor, no nodes
 - Advanced stages –
 - III - any tumor, any positive nodes
 - IV - any tumor, any distant metastases
Histologic grade

- G1 - well differentiated (5y survival = 100-56%)
- G2 - moderately differentiated (5y survival = 80-33%)
- G3 - poorly differentiated (5y survival = 58-11%)

Moderate impact on treatment decisions.
The pathologic stage at diagnosis (pTNM) remains the best indicator of long-term prognosis for both colon and rectal cancer
Our patient

- CT of abdomen, chest and pelvis showed single lesion in liver (probably adenoma) and primary tumor in ascending colon

- CEA level is normal

- H-P: adenocarcinoma G2

- What is our stage here?
Our patient

- cTxNxM0
- PS0
- Age: 65
- No serious comorbidities

What should we do next?
Treatment

- Surgery
 - Cornerstone of every treatment
 - 99% obligatory (if feasible)
 - Early trials for observation alone after pCR (pathological complete response) after neoadjuvant chemoradiotherapy in rectal carcinoma - **not a standard approach**

- Radiotherapy
 - „Never” in colon cancer
 - Patients with rectal carcinoma
 - Neoadjuvant with chemotherapy preferred to adjuvant

- Chemotherapy
 - Adjuvant in colon cancer (all stage III, high-risk stage II)
 - Adjuvant in rectal cancer after neoadjuvant CRTH (large debate ongoing)
 - Neoadjuvant with radiotherapy in rectal cancer
 - Metastatic (standard of care)
Surgery

- the only curative modality for localized colorectal cancer
- potentially curative option for selected patients with limited metastatic disease in liver and/or lung
- surgical palliation for symptoms of obstruction and bleeding from the primary tumor
Surgery
Colon cancer

- **Resection margins** — proximal and distal at least 5 cm from the tumor
- **Regional lymphadenectomy** - at least 12 lymph nodes must be assessed for adequate staging

SURGICAL TECHNIQUES
- Right hemicolectomy
- Extended right hemicolectomy
- Transverse colectomy
- Left hemicolectomy
- Sigmoid colectomy
- Subtotal and total colectomy
- Laparoscopic colectomy - for selected patients
- Polypectomy - for selected patients
Surgery
Colon cancer

Right hemicolectomy
Extended right hemicolectomy
Transverse colectomy
Left hemicolectomy
Sigmoid colectomy
TREATMENT - SURGERY
RECTAL CANCER

• The upper extent of the rectum is typically defined as 12 cm from the anal verge
• If sphincter preservation is to be achieved, the tumor has to be located high enough above the top of the anorectal ring to allow for an adequate distal margin
• Preoperative chemoradiotherapy may permit sphincter preservation in some patients with low-lying tumors
TREATMENT - SURGERY
RECTAL CANCER

- removal of at least **12** lymph nodes

- complete removal of the **primary tumor** along with the adjacent **mesorectal tissue** containing the regional lymphatics and the superior hemorrhoidal artery pedicle

- status of the **distal and radial resection margins** is an important determinant of surgical outcome
 - distal margin at least 2 cm
 - proximal margin – 5 cm
 - radial margin is more critical for local control – **TME- Total Mesorectal Excision**
TREATMENT - SURGERY
RECTAL CANCER
TME - Total Mesorectal Excision
TREATMENT – SURGERY
RECTAL CANCER

SURGICAL TECHNIQUES

- **Abdominal perineal resection (APR)**
 - removal of the primary tumor along with a complete proctectomy
 - the need for a permanent colostomy
 - surgical therapy of distal rectal cancers

- **Low anterior resection (LAR)**
 - preserves the anal sphincter
 - surgical therapy for upper and mid-rectal tumors

- **Local excision - Transanal endoscopic microsurgery (TEM)**
 - Small, T1 tumors, G1-2
 - distal tumors
RECTAL CANCER
NEoadjuvant treatment
(preferred)

- Radiotherapy alone (RTH)
- Chemo-radiotherapy (CTH-RTH)
RECTAL CANCER
NEOADJUVANT CHEMORADIOThERAPY

DEFINITIVE INDICATIONS
- T3, T4 tumors

RELATIVE INDICATIONS
- T1/2 tumors and clinically node-positive
- distal tumors – converts surgical procedure from APR to sphincter-preserving operation
- mesorectal fascia involvement
Radiation therapy (RTH) can be used before surgery (preoperative) or after surgery (postoperative). The German Rectal Cancer Study compared preoperative chemoradiotherapy (CTH-RTH) to postoperative therapy. Preoperative CTH-RTH was associated with a significantly lower pelvic relapse rate compared to postoperative therapy. The 5-year disease-free (68% vs 65%) and overall survival rates (76% vs 74%) were similar for preoperative and postoperative therapy. Among 194 patients with low-lying tumors who were thought preoperatively to require APR, those undergoing preoperative chemoradiotherapy were twice as likely to undergo a sphincter-sparing operation (39% versus 19%).
Adjuvant treatment
Rectal Cancer

- Adjuvant CRTH
 - If neoadjuvant CRTH was not performed

- Adjuvant CTH after neoadjuvant CRTH
 - We do not know (yet...)
 - ... but probably not indicated
ADJUVANT TREATMENT COLON CANCER

CHEMOTHERAPY (CTH)

• for patients who have undergone potentially curative resection, disease recurrence is thought to arise from clinically occult micrometastases that are present at the time of surgery

• the goal of postoperative (adjuvant) therapy is to eradicate these micrometastases, thereby increasing the cure rate

• Indicated for patients with:
 - stage III (N+) colon cancer
 - high-risk patients with stage II colon cancer (e.g. pT4, inadequate LN dissection, bowel obstruction, bowel perforation, lymphovascular invasion, perineural invasion)
ADJUVANT TREATMENT COLON CANCER

survival benefit from adjuvant chemotherapy

stage II and III colon cancer

Survival benefit from adjuvant chemotherapy by stage

- Stage II colon cancer
- Stage III colon cancer (N+)

Stage III - always

Stage II - sometimes (but should be „rarely“)
ADJUVANT TREATMENT
COLON CANCER

CHEMOTHERAPY (CTH)

• 6 months of adjuvant CTH

• **5-FLUOROURACIL (5FU)** BASED CTH
 • Capecytabine is oral prodrug for 5FU - similar efficacy
 • Leucovorine (folinic acid) as a „biomodulator” to enhance efficacy of 5FU

• Stage II - 5FU + leucovorine

• Stage III - 5FU + leucovorine + oxaliplatine
ADJUVANT TREATMENT
COLON CANCER

CHEMOTHERAPY (CTH) - NEWER DRUGS

- OXALIPLATIN + infusion 5FU/LV = FOLFOX regimen
- OXALIPLATIN + bolus i.v 5FU/LV = FLOX regimen
 - survival benefit in stage III and high-risk stage II colon cancer (FOLFOX > FLOX)
- OXALIPLATIN + CAPECITABINE = XELOX regimen

FOLFOX or FLOX or XELOX regimen are recommended in stage III colon cancer

- IRINOTECAN (IFL or FOLFIRI regimen)- no survival benefit in adjuvant treatment
TREATMENT OF METASTATIC COLORECTAL CANCER (MCRC) stage IV disease (M1)
mCRC TREATMENT

CURATIVE
- should be considered in patients with organ-limited metastatic disease involving the liver or lung that would allow potentially curative surgical resection (M1a disease)
 - CTH + surgery of liver meta
 - 5-year survival about 40%

PALLIATIVE
- should be considered in patients with multiple organ involvement with the goal of increasing quality of life
 - CTH alone
 - not curative
 - prolongs survival - 5-year survival 5-9%
 - maintains quality of life
mCRC TREATMENT

ACTIVE CHEMOTHERAPEUTIC AGENTS

• **fluoropyrimidines** (5-fluorouracil [5-FU] which is usually given with leucovorin [LV], capecitabine, UFT)

• **irinotecan** - FOLFIRI, IFL (irinotecan + 5FU)
 - CapIRI=XELIRI (irinotecan + capecitabine) - high toxicity!!!

• **oxaliplatin** - FOLFOX, FLOX (oxaliplatin + 5FU)
 - XELOX (oxaliplatin + capecitabine)
ADVANCED COLORECTAL CANCER

ACTIVE DRUGS:
- fluoropyrimidine (5FU, capecitabine, tegafur)
- oxaliplatin
- irinotecan

in clinical trials, median OS was significantly correlated with the percentage of patients who received all three drugs in the course of their disease.

Patients who receive a doublet first-line, like FOLFOX or FOLFIRI, have a much higher chance to receive the third drug as the next step than patients who have to go through 3 steps.

So, in clinical practice, first-line doublets are standard of care.

Improvement of overall survival from 6 months to 2-3 years
ADVANCED COLORECTAL CANCER
TARGETED THERAPY

MONOCLONAL ANTIBODIES (M\textsubscript{o}A\textsubscript{b})
BEVACIZUMAB (AVASTIN)-a humanised monoclonal antibody that binds VEGF prior to its attachment to its natural receptors.
Concerns Regarding Hypertension

- Bevacizumab: anti-VEGF monoclonal antibody
 - Associated with increased incidence (10% to 15%) of grade 3/4 hypertension
 - Should not be used in mCRC patients with uncontrolled or severe hypertension
 - Associated with increased risk of stroke and/or other arterial thromboembolic events
 - Especially in patients 65 yrs of age or older

- Bevacizumab is also associated with risk of
 - Bleeding complications
 - Wound healing complications
 - GI perforations
 - Proteinuria, nephrotic syndrome
BEVACIZUMAB in metastatic colorectal cancer – pivotal trial

Progression-free survival (PFS) Overall survival (OS)

BLOCKING EGFR in advanced colorectal cancer - RAS mutation significance
CETUXIMAB in advanced colorectal cancer: CRYSTAL and OPUS trials

COMBINED ANALYSIS: increased survival in unmutated KRAS population

<table>
<thead>
<tr>
<th>wtKRAS population</th>
<th>FOLFIRI/FOLFOX4</th>
<th>FOLFIRI/FOLFOX4 + cetuximab</th>
<th>p=</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median progression-free survival</td>
<td>7,6 months</td>
<td>9,6 months</td>
<td><0,0001</td>
</tr>
<tr>
<td>Median overall survival</td>
<td>19,5 months</td>
<td>23,5 months</td>
<td>0,0062</td>
</tr>
</tbody>
</table>

Köhne i wsp. ASCO GI 2010, Abstract # 406
MONOCLONAL ANTIBODIES (MoAb)

CETUXIMAB and PANITUMUMAB

- appear to have comparable efficacy when used for salvage therapy in patients with chemotherapy-refractory mCRC
- both target the same antigen (the EGFR), and preclinical data suggest a similar mode of action

DIFFERENCE?

- cetuximab is a chimeric mouse/human MoAb
- panitumumab is a completely human MoAb - the incidence of hypersensitivity reactions with panitumumab is much lower, and this eliminates the need for routine premedication before therapy
MONOCLONAL ANTIBODIES (MoAb)
TOXICITY OF EGFR INHIBITORS: CETUXIMAB, PANITUMUMAB

ACNE LIKE RASH
MONOCLONAL ANTIBODIES (MoAb)

TOXICITY OF EGFR INHIBITORS: CETUXIMAB, PANITUMUMAB
MONOCLONAL ANTIBODIES (MoAb)
TOXICITY OF EGFR INHIBITORS: CETUXIMAB, PANITUMUMAB

HAIR CHANGES

- thin, curly hair
- long eyelashes
Stage IV CRC: 2014

Best supportive care

5-FU

Irinotecan

Capecitabine

Oxaliplatin

Cetuximab

Bevacizumab

Panitumumab

Ziv-aflibercept

Regorafenib

Median OS

OS (M)
Curative treatment of metastatic colorectal cancer
CURATIVE TREATMENT OF metastatic CRC

- patients with isolated liver/lung metastases
- surgery of liver metastases (metastasectomy) + adjuvant CTH
- 5-year overall survival 24-58%
- patients who survive 10 years appear to be cured
- **modern criteria for resectability** have been expanded to include any patient in whom all disease can be resected with negative margins and who has adequate hepatic volume/reserve
- for patients with primarily unresectable metastases induction CTH (conversion CTH) downstages the metastases and allows for complete resection in 12-33% with 5-year survival of about 30-35%
- addition of cetuximab or bevacizumab to a chemotherapy backbone may increase the number of patients potentially eligible for resection
METASTATIC COLORECTAL CANCER

SURGICAL TREATMENT

LIVER METASTASES

PRIMARILY UNRESECTABLE - 85%

CHEMOTHERAPY

5ySurvival - 5%

25%

RESECTABLE - 15%

CHEMOTHERAPY

5ySurvival - 50%

MODERN CHEMOTHERAPY
Hereditary CRC syndromes

- Familial adenomatous polyposis
- Lynch syndrome
Familial adenomatous polyposis (FAP)

- < 1% of colorectal cancers
- Germline mutations in the adenomatosis polyposis coli (APC) gene which is located on chromosome 5
- Numerous colonic adenomas appear during childhood
- Symptoms appear at an average age of approximately 16 years
- Colonic cancer occurs in 90% of untreated individuals by age 40
- Attenuated form of APC (AAPC) carries a similarly high risk of colon cancer but is characterized by fewer adenomas and an older average age of cancer diagnosis of 54 years
GENETIC SYNDROMES

Familial adenomatosus polyposis (FAP)
FAP management

- FAP is the paradigm for preventive removal of the end-organ before tumor development in a cancer syndrome.

- APC gene testing should be performed at 10 to 12 years of age, about the time that sigmoidoscopy would begin.

- If APC gene mutation has been identified, and when adenomas are found, prophylactic colectomy is performed.
Hereditary nonpolyposis colorectal cancer (HNPCC; Lynch syndrome)

- 1 to 5% of all colonic adenocarcinomas
- caused by mutations in one of the mismatch repair genes, hMLH1, hMSH2, hMSH6, or PMS2
- primarily characterized by early age of onset and predominant involvement of the right colon
- mean age at initial cancer diagnosis is 48 years, with some patients presenting in their 20s
- approximately 10 percent will have synchronous or metachronous cancers
- extracolonic cancers – mostly endometrial carcinoma; other sites: ovary, stomach, small bowel, hepatobiliary system, and renal pelvis or ureter
HNPCC management

- annual screening colonoscopy beginning at age 20 to 25 years

- Because of the high rate of synchronous and metachronous colon cancers in HNPCC kindreds, **subtotal colectomy** has been recommended at the first diagnosis of colon cancer in a member of an HNPCC family

- Prophylactic colectomy in HNPCC gene carriers remains a controversial recommendation

- Chemoprevention trials in HNPCC utilizing cyclooxygenase-2 inhibitors are underway

- Screening for cancer in other sites (endometrium, ovaries etc)
Thank you