

Multidisciplinary approach

to genitourinary cancers

SZPITAL Uniwersytecki W krakowie

Polskie Towarzystwo Onkologii Klinicznej

Paweł Potocki

Katedra i Klinika Onkologii Uniwersytet Jagielloński – Collegium Medicum onkologia.cm-uj.krakow.pl pawel.potocki@uj.edu.pl

Introduction

How to choose treatment modality?

- Systemic therapy for systemic disease ... unless:
- Minority of cancer mass responsible for a majority of clinical picture (obstruction; neurologic deficit; pain; bleeding; recurrent infections etc)
- Few types of cancers with good results from localized treatment of oligometastatic disease (OMD): colorectal; NET low grade; kidney; prostate.

Localized therapy for localized disease ... unless:

- Curation rate can be improved by eradication of micrometastates – adjuvant treatment
 - Typically after localized treatment
 - Sometimes before localized treatment (oesophageal, gastric, rectal, bladder, aggressive breast cancer subtypes)
- Localized treatment not possible due to tumour extent
 - induction treatment
- Systemic treatment much more effective than localized – "chemo-curable" cancers (lymphomas, SCLC, germ-cell tumours)

Simplified strategy algorithm

- Inform the patient
- Refer to a comprehensive cancer centre (MDT)
- Schedule typical lab studies
 - CBC, coagulation, blood group, viral serology (some form of biopsy/surgery is anticipated)
 - creatinine, TSH, info on implants and allergies (some form of imaging is anticipated)
- Prehabilitate

- Diagnostics by MDT
 - Histo-pathological verification
 - Staging

Simplified strategy algorithm

Simplified strategy algorithm

Systemic palliative treatment +/- localized interventions for most symptomatic lesions

- Targeted treatment preferred
- Chemo if targeted not available

Bladder Cancer

Bladder cancer - epidemiology

Number of new cases in 2018, both sexes, all ages

Number of deaths in 2018, both sexes, all ages

https://gco.iarc.fr/

Bladder cancer – male incidence rates worldwide

Age standardized (World) incidence rates, bladder, males, all ages

Bladder cancer – female incidence rates worldwide

Age standardized (World) incidence rates, bladder, females, all ages

Bladder cancer – incidence by age and gender

www.cancerresearchuk.org

Bladder cancer – risk factors

- M > F (HR ~2-3)
- chemical exposure:
 - Tobacco
 - Carbohydrates: plastics, coal, tar, asphalt, aristolochic acid
 - Arsenic, chlorine
 - cyclophosphamide
- chronic irritation:
 - catheters
 - recurrent urinary track infections
 - Irradiation
- gene abnormalities
 - multiple possible defects with low prevalence
 - Lynch syndrome

Bladder cancer – presentation

Hematuria

- Pain
 - Iower abdomen from primary
 - various locations from metastases
- Voiding symptoms:
 - Dysuria: urgency, frequency
 - Obstruction: training, intermittent stream,
- Recurrent urinary tract infections

Screening not viable

Bladder cancer – anatomy

Bladder cancer - histology

Bladder cancer

non-invasive workup

CT

Iocal and metastatic staging

MRI

Marginally better than CT in local staging

USG

- Full bladder required
- Unreliable but available (low sensitivity)

MR

Urinalysis

- Haematuria, leukocyturia
- Unreliable but available (low specificity)

Urine cytology

 Unreliable (low sensitivity, high specificity)

Bladder cancer - workup

Cystoscopy

- Plain or fluorescent contrast enhanced
- with TURBT or biopsy
- TURBT = trans urethral resection of bladder tumor

Bladder cancer - workup

• Bladder cancers and papillomas as seen in cystoscopy

Bladder cancer – pathology

- Urothelial Cancer > 90%
 - (>90% are in bladder, 8% in renal pelvis, 2% in ureter or urethra)
- Squamous Cancer 3%
- Adenocarcinoma 1 2%
- Small Cell 1%
- Other (lymphomas, sarcomas, neuroendcrine etc.) <1%</p>

Bladder cancer – staging

Locoregional assessment (TN)

- CT
 - Relation to adjecent organs
 - Depth of invasion
- MRI
 - Relation to adjecent organs
 - Depth of invasion
- TURBT
 - Depth of invasion

Metastasis assessment (M)

CT

- MRI (if CT contrindicated)
- PET
 - Limited evidence
 - Limited utility of FDG
 - Choline-based radiotracers

Bladder cancer – staging

T2b

T4a

T4b

T3a

ТЗЬ

- 1. Epithelium
- 2. Subepithelial connective tissue
- 3. Muscle
- 4. Perivesical fat

Primary tur	mor (T)
ТХ	Primary tumor cannot be assessed
Т0	No evidence of primary tumor
Та	Noninvasive papillary carcinoma
Tis	Carcinoma in situ: "flat tumor"
T1	Tumor invades lamina propria (subepithelial connective tissue)
T2	Tumor invades muscularis propria
pT2a	Tumor invades superficial muscularis propria (inner half)
pT2b	Tumor invades deep muscularis propria (outer half)
Т3	Tumor invades perivesical tissue
рТЗа	Microscopically
pT3b	Macroscopically (extravesical mass)
Т4	Tumor invades any of the following: prostatic stroma, seminal vesicles, uterus, vagina, pelvic wall, abdominal wall
T4a	Tumor invades prostatic stroma, uterus, vagina
T4b	Tumor invades pelvic wall, abdominal wall

Bladder cancer – staging

Regional lymph nodes (N) Regional lymph nodes include both primary and secondary drainage regions. All other nodes above the aortic bifurcation are considered distant lymph nodes. Lymph nodes cannot be assessed NX No lymph node metastasis NO Single regional lymph node metastasis in the true pelvis (perivesical, **N1** obturator, internal and external iliac, or sacral lymph node) Multiple regional lymph node metastasis in the true pelvis (perivesical, obturator, internal and external iliac, or sacral lymph **N2** node metastasis) **N3** Lymph node metastasis to the common iliac lymph nodes Distant metastasis (M) MO No distant metastasis **M1** Distant metastasis Distant metastasis limited to lymph nodes beyond the common iliacs M1a M1b Non–lymph node distant metastases

Stage	т	Ν	Μ
Stage Oa	Та	N0	M0
Stage Ois	Tis	NO	M0
Stage I	T1	N0	M0
Stago II	T2a	N0	M0
Stage II	T2b	NO	M0
	ТЗа	N0	M0
Stage IIIA	T3b	NO	M0
Stage IIIA	T4a	N0	M0
	T1-T4a	N1	M0
Stage IIIB	T1-T4a	N2,N3	M0
	T4b	Any N	M0
Stage IVA	Any T	Any N	M1a
Stage IVB	Any T	Any N	M1b

Bladder cancer Treatment for non-muscle invasive disease Non-muscle Invasive (NMIBC): TURBT of all visible lesions H-P assessment margins

- muscular layer invasion
- adjuvant intracystic therapy (directly after resection)
 - cytotoxic (doxorubicin, mitomycin C, bleomycin)
 - immunomodulatory BCG (prefered in Tis tumours)
 - depending of risk factors as much as 7 doses in 36 months
- Follow-up cytostoscopy
 - 1-4 weeks after TURBT)
 - assessment of pos-resection site with biopsy.
- Repeat for recurrent lesions

ideally TUR should have been complete and followed by IPOMC* Contemplate 2nd TURBT if: incomplete initial TUR, no muscle present in specimen or high-risk NMIBC Intravesical instillations (Mitomycin C or BCG) according to risk group Cystoscopic Surveillance according to risk group (for high risk, 10 year follow-up)

Bladder cancer - immunotherapy

- Neoadjuvant chemo better than adjuvant chemo
- Radical cystectomy + extensive lymphadenctomy
 - Iong-standing standard (but QoL suboptimal)
 - Salvage radiation possible if R1
 - newer options are available
- Urinary diversion
 - Non-Continent Urinary Diversion
 - Generation of stoma (most common diversion)
 - Patient wears urostomy appliance to collect urine
 - Continent Urinary Diversion
 - Orthotopic ileal neobladder void per urethra
 - Generation of pouch from intestine to store urine
 - Continence mechanism from "pouch" to skin
 - Patient catheterizes "pouch" throughout the day to empty urine

Bladder cancer

Treatment for muscle invasive disease

- Bladder sparing treatment protocols
 - Radical radiation alone
 - Long-term outcomes ≈ surgery alone
 - Not all tumors sensitive, not all patients able to complete treatment
 - Salvage surgery impractical (no immediate outcome measure)
 - Radical radio-chemotherapy
 - Long-term outcomes ≈ neoadjuvant chemo + surgery
 - Less immediate failures compared to RT alone but more toxic
 - Salvage surgery impractical (no immediate outcome measure)

Bladder cancer Treatment for muscle invasive disease

- Bladder sparing treatment protocols
 - Trimodality therapy:
 - Radical TURBT, then
 - Chemoradiotherapy with cisplatin (either cocomitant or sequential) to total dose of ~ 66 Gy.
 - early (4 weeks into RT after 40Gy) response assessment imaging and cystoscopy with biopsy
 - If complete resepone continue radiochemotherapy
 - if not coplete response stop radiotherapy and perform cystectomy

Bladder cancer Treatment for muscle invasive disease

Bladder cancer Metastatic disease

Re-staging

- Assess feasibility of localized treatment modalities
 - ie. radiotherapy or surgery in isolated nodal recurrence
- Choose systemic treatment
 - Clinical trial
 - Assess predictive biomarkers for immunotherapy (checkpoint inhibitors)
 - assess feasibility of palliative chemotherapy
 - platinum based (most active cytotoxic class)
 - poly vs monotherapy
- remember about supportive care
 - Bisphosphonates
 - Tromboprophylaxis
 - pain management)
- Monitor the response

Patients characteristics	Regimen irrespective of PD-L1 status	PD-L1-positive
Creatinine clearance >60 ml/min	Cisplatin-based therapy	
Creatinine clearance <60 ml/min or PS 2	Gemcitabine/ carboplatin	Atezolizumab Pembrolizumab
or comorbidity		ESMO 2019

Prostate cancer

Prostate cancer - epidemiology

Number of new cases in 2018, both sexes, all ages

Lung Breast 2 093 876 2 088 849 1 033 701 841 080 4 1 849 518 Colorectum Prostate Stomach Liver Oesophagus 572 034 569 847 567 233 Cervix uteri Thyroid Bladder 549 393 Non-Hodgkin lymphoma Pancreas 509 590 458 918 437 033 403 262 382 069 Leukaemia Kidney Corpus uteri Lip, oral cavity 354 864 Brain, nervous system Ovary Melanoma of skin Gallbladder 296 851 295 414 287 723 219 420 Larynx 177 422 159 985 129 079 Multiple myeloma Nasopharynx Oropharynx 92 887 Hypopharynx 80 608 Hodgkin lymphoma 79 990 Testis 71 105 Salivary glands 52 799 Vulva 44 235 Kaposi sarcoma 44 235 Penis 34 475 Mesothelioma 30 443 Vagina 17 600 Kaposi sarcoma 0 500 000 1 000 000 1 500 000 2 000 000

Number of deaths in 2018, both sexes, all ages

https://gco.iarc.fr/

Prostate cancer – incidence rates worldwide

Age standardized (World) incidence rates, prostate, all ages

occult prostate cancer

Prosate cancer – incidence by age and gender

Prostate cancer – risk factors

- Ethnicity
 - African highest risk
 - Asian lowest risk
- Genetic factors
 - dHRR estimated
 - ~10% patients are HRR mutant (~2,5 x more common than breast cancer patients)
 - BRCA2 and ATM most common mutations.
 - dMMR (Lynch Syndrome)
- Metabolic syndrome
 - Obesity
 - Waist/hip ratio
- Enviromental carcinogenes
 - Tobacco
 - Zinc
 - SDTs

Prostate cancer – protective factors

- Modest protective effects demonstrated for dietary factors:
 - Coffee
 - Soy
 - Tomatoes
 - Fish oil
- NSAIDs
- Ejaculation frequency
 - > 5x/week is protective
 - Effect especially strong in 20-30 year olds

Prostate cancer – presentation

- Symptoms non-specific, frequently asymptomatic
- Voiding symptoms:
 - Dysuria: urgency, frequency
 - Obstruction: training, intermittent stream,
- Hematuria/hematospermia
- Pain
 - Perineum or lower abdomen from primary
 - various locations from metastases
- Recurrent urinary tract infections

Screening controversial

Prostate cancer – screening

- Conflicting results from trials assessing PSA-based screening on mortality
- Even positive trials reported high NNT
 - ~800 screened and ~16 of them treaded o prevent one death
- Screening of unselected population controversial
- Screening of patients with dHRR probably more beneficial trials underway
- Shared decision making is the recommended approach

Prostate cancer – workup

- DRE (digital rectal examination)
 - Explain first! (What? Why? How? Consent)
 - Prepare (gloves, wipes, lube, sink, privacy)
 - Position (on the side, knees close to the chest, asking the patient to bear down will relax the sphincter)
 - Examine
 - Pain
 - Apparent tumor
 - Size, firmness, symmetry
 - Affixation to adjacent structures (especially rectal mucosa)
 - Hygiene (wipe, clean-up, both wash hands)
 - Explain again (findings, significance)

PSA

- Glycoprotein
 - Member of kalikrein family
 - Gene on chromosome 19
- Produced :
 - Predominantly by prostate and prostate cancer cells
 (any damage to a priorly health prostate will cause PSA increase main source of false positives)
 - Rarely produced in other tumors relying on androgen-dependent stimulation (ie. apocrine cancer)
 - Race amounts produced in other tissues
 (ie. ileum, thyroid, sin glands, lactating breasts)
- Half-life 2-3 days (free PSA ~2h).

- Olsson, A. Y. et al. Int. J. Cancer 113, 290–297 (2005)
- Diamandis, E. P. et al. Urol. Clin. North Am. 24, 275–82 (1997)

Adrenal Glands 5α-reductase **Leydig Cells** HSP **Pituitary Gland (LH)** AR ARE **AR Target Genes** Hypothalamus (LHRH) **PSA** Survival Growth

- Saraon, P. et al. Clin. Chem. 57, 1366–1375 (2011)
- Brzeziński A et al. Raport COBJDL 2007

- **PSA**
- Expression strongly linked to androgen receptor stimulation (puberty biomaker)
- PSA level depends on:
 - Quantity of producing cells
 - possible gene amplification
 - Androgen receptor stimulation level,
- PSA measuring test still not fully standardized (a good practice is keeping to one laboratory)

Prostate cancer – workup

Histopatologic verification

- Mapping biopsy
 - At least 6 cores per lobe
 - Good representation of whole prostate
- Targeted biopsy (Fusion biopsy)
 - Several cores from the tumor (as seen on MRI but biopsy performer under ultrasound hence software image Fusion needed)
- Formal biopsy
 - Metastatic patient with significantly increased PSA to confirm histology
- TURP trans-urethral resection of prostate
 - Mainly to alleviate obstruction but can also provide histology

Prostate cancer – staging

Locoregional assessment (TN)

- MRI
 - Best way to localize the primary
 - Best way to assess resectability
 - Pinpointing the local recurrence

CT

Relation to adjacent organs if MRI not available

PET

- PSMA radiotracer as specific as PSA
- Choline or acetate based tracers if PSMA not available
- FDG is of limited use
- PET especially useful for pinpointing the local recurrence

Metastasis assessment (M)

- CT (chest, abdomen, pelvis)
- MRI
 - if CT contraindicated
 - or to assess the skeleton
- Bone scan (Tc)
- PET
 - PSMA
 - Choline or acetate based tracers if PSMA not available

Prostate cancer – staging

T category	T criteria	N category	N criter
ТХ	Primary tumor cannot be assessed	NX	Regiona
т0	No evidence of primary tumor	NO	No posi
T1	Clinically inapparent tumor that is not palpable	N1	Metasta
T1a	Tumor incidental histologic finding in 5% or less of tissue resected		
T1b	Tumor incidental histologic finding in more than 5% of tissue resected	M category M0	M crite No dista
T1c	Tumor identified by needle biopsy found in one or both sides, but	M1	Distant
	not palpable	M1a	Nonreg
Т2	Tumor is palpable and confined within prostate	M1b	Bone(s)
T2a	Tumor involves one-half of one side or less	M1c	Other s
T2b	Tumor involves more than one-half of one side but not both sides		
T2c	Tumor involves both sides	NOTE: When mo category is used	
Т3	Extraprostatic tumor that is not fixed or does not invade adjacent structures	Grade Group	
T3a	Extraprostatic extension (unilateral or bilateral)	1	
T3b	Tumor invades seminal vesicle(s)	2	
Т4	Tumor is fixed or invades adjacent structures other than seminal vesicles such as external sphincter, rectum, bladder, levator muscles, and/or pelvic wall	3 4	
		5	

N criteria
Regional nodes were not assessed
No positive regional nodes
Metastases in regional node(s)
M criteria
No distant metastasis
Distant metastasis
Nonregional lymph node(s)
Bone(s)
Other site(s) with or without bone disease

NOTE: When more than one site of metastasis is present, the most advanced category is used. M1c is most advanced.

Grade Group	Gleason score	Gleason pattern			
1	≤6	≤3+3			
2	7	3+4			
3	7	4+3			
4	8	4+4, 3+5, or 5+3			
5	9 or 10	4+5, 5+4, or 5+5			

Prostate cancer – staging

Prostate cancer TNM prognostic stage groups AJCC UICC 8th edition

When T is	And N is	And M is	And PSA is	And Grade Group is	Then the stage group is
cT1a-c, cT2a	N0	M0	<10	1	Low
pT2	NO	M0	<10	1	l risk
cT1a-c, cT2a, pT2	NO	M0	≥10 <20	1	IIA
cT2b-c	NO	M0	<20	1	IIA Interm.
T1-2	NO	M0	<20	2	IIB risk
T1-2	NO	M0	<20	3	lic
T1-2	NO	M0	<20	4	IIC
T1-2	NO	M0	≥20	1-4	IIIA
T3-4	NO	M0	Any	1-4	IIIB risk
Any T	NO	M0	Any	5	IIIC
Any T	N1	M0	Any	Any	IVA
Any T	Any N	M1	Any	Any	IVB

Prostate cancer Treatment for localized disesase

- Watchful waiting
 - only PSA testing
 - decision on androgen deprivation (ADT) on significant progression
- Active surveillance
 - PSA and imaging, possibly re-biopsy
 - definite therapy on risk increase)
- Radical prostatectomy
- Radical radiation (tele or brachy)
- Intermediate risk options:

Intermediate risk options

- Active surveillance
 - PSA and imaging, possibly re-biopsy
 - definite therapy on risk increase)
- Radical prostatectomy ± adjuvant radiation
- Radical radiation ± neoadjuvant ADT
- High risk options
 - Radical prostatectomy with lymphadenectomy ± adjuvant radiation
 - Neoadjuvant ADT -> radical radiation -> ADT

Prostate cancer Treatment for localized disesase

Surveillance post radical treatment

Routine assessments

Prostate cancer

- PSA
- Anamnesis + physical
- (DRE) not necessarily required if no PSA increase
- Surveillance length controversial (forever?)

Polish surveillance protocol

					· ·															
Peri	od									Fre	equer	าсу								
Pier	wszy i	r <mark>ok ob</mark>	serwa	сјі						Со	3 mi	esiące								
Kole	jne 2	lata o	bserw	acji						Со	6 mi	esięcy								
Kole	jne la	ta obs	erwad	.ji						Со	12 m	niesięcy	/							
Тх	FU	FU	FU	FU		FU		FU		FU)	FU				FU)			FU
0	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48	51	54	57	60
Jass	em, J.	et al. N	lowotv	vory 64	, 415-	-435 (20)14)												mie	esiace

Prostate cancer Treatment for recurrent disease

- Assess the feasibility of definite treatment
 - Localized recurrence
 - RT if prostatectomy before and vice versa
 - HIFU, brachy, needle ablations
 - Oligomeastatic disease
 - Localized treatment associated with improved survival
 - Resection for isolated nodal recurrence
 - SBRT for isolated bone lesion

- Choose systemic treatment if definite not possible
 - ADT androgen deprivation therapy
 - Chemotherapy
 - Docetaxel
 - Cabazitaxel
 - New generation antiandrogens
 - Androgen synthesis inhibitors abiraterone
 - Pleiotropic receptor inhibitors enzalutamide, apalutamide, darolutamide.
 - Radiopharmaceuticals
 - Radium-223.
 - PARP inhibitors
 - Olaparib, rucaparib

Prostate cancer is androgen-dependent

Pienta KJ, Bradley D*Clin. Cancer Res.*, 2006, vol. 12, no. 6, pp. 1665–1671P.

Prostate cancer Androgen deprivation therapy

Choice of ADT method:

- GnRH agonists (goserelin, tryptorelin, leuprorelin)
- GnRH antagonists (degarelikx)
- orchiectomy
- All options similarly active but:
 - Orchiectomy or agonist preferred when:
 - Complete or imminent malignant spinal cord compression
 - Possibly (low quality data) for patients with "shallow" castration (testosterone level 20-50ng/ml)
 - Orchiectomy most cost efficient but rarely utilized (psychological reasons)

castration sensitive vs castration resistant

Castration sensitive

Recurrence or progression,

Prostate cancer

- while the patient is NOT subjected to androgen deprivation therapy
- Testosterone level > 50ng/ml (1,7 nmol/l)
- Earlier adjuvant or neoadjuvant ADT permitted if subsequent castration reversal documented

Castration sensitive

- Recurrence or progression
- While the patient IS subjected to androgen deprivation therapy
- Testosterone level < 50ng/ml (1,7 nmol/l)</p>
- Criteria for significant progression have to be met

Prostate cancer castration-resistance mechanisms

Seruga B, et al., Nat. Rev. Clin. Oncol., 2011

Prostate cancer Docectaxe

- Disorganises microtubules
- G2/M arrest (mitotic spindle damage)
- Cytoskeleton damage
 - Endothelial toxicity
 - Intracellular transport disorganisation
 - Inhibition of androgen receptor translocation

Prostate cancer Enazlutamide

····· AR ENZALUTAMIDE Cell Cytoplasm 1.Inhibits binding of androgens to AR 2.Inhibits AR nuclear translocation 3. Inhibits AR-mediated DNA binding AR 3 AR=androgen receptor. T=testosterone. Cell Nucleus

Prostate cancer Enazlutamide

Androgen biosynthesis – mainly in Leydig cells, but also in peripheral tissues (adrenals,

cancer and adjacent cells) CYPs **HSDs** SULT Cholesterol 3β hydroxysteroid Desmolase dehydrogenase Cholesterol Pregnenolone Progesterone Aldosterone CYP17 CYP17 3β hydroxysteroid dehydrogenase 17α hydroxy 17α hydroxy Cortisol Abiraterone pregnenolone progesterone CYP17 CYP17 3β hydroxysteroid dehydrogenase Dehydroepiandrosterone Androstenedione Testosterone

1 H Hydrogen Nonmetal			ster V		7
3 Lithium Alkali Metal	4 Beeyllium Alkaline Earth Metal				
11 Na Sodium Alkali Metal	12 Mgg Magnesium Alkaline Earth Metal	_			
19 K Potassium Alkali Metal	20 Calcium Alkaline Earth Metal	21 SCC Scandium ransition Metal	22 Ti Titanium Transition Metal	23 V Vanadium Transition Metal	24 C Chrom Transition
37 Rb Rubidium Alkali Metal	38 Sr Strontium Alkaline Earth Metal	39 Y Yttrium Transition Metal	40 Zr Zirconium Transition Metal	41 Nbb Niobium Transition Metal	42 Molybdo Transition
55 CS Cesium Alkali Metal	56 Ba a Barium	*	72 Hff Hafnium Transition Metal	73 Ta Tantalum Transition Metal	74 M Tungs Transition
87 Francium Alkali Metal	88 Ra Radium Akalina Earth Metal	**	104 Rf Rutherfordium Transition Metal	105 Db Dubnium Transition Metal	10 Seabory Transition

Prostate cancer and homologousrecombinationUnrepaired SSBs

- BER base excision repair
- HRR homologous recombination repair

Lord CJ, Ashworth A, Nature, 2012,

Multidisciplinary approach

UNIWERSYTET JAGIELLOŃSKI Collegium medicum

to genitourinary cancers

SZPITAL Uniwersytecki W krakowie

Polskie Towarzystwo Onkologii Klinicznej

Paweł Potocki

Katedra i Klinika Onkologii Uniwersytet Jagielloński – Collegium Medicum onkologia.cm-uj.krakow.pl pawel.potocki@uj.edu.pl

Thank you

